PCA and LDA based Neural Networks for Human Face Recognition

نویسندگان

  • Alaa Eleyan
  • Hasan Demirel
چکیده

After 9/11 tragedy, governments in all over the world started to look more seriously to the levels of security they have at their airports and borders. Countries annual budgets were increased drastically to have the most recent technologies in identification, recognition and tracking of suspects. The demand growth on these applications helped researchers to be able to fund their research projects. One of most common biometric recognition techniques is face recognition. Although face recognition is not as accurate as the other recognition methods such as fingerprints, it still grabs huge attention of many researchers in the field of computer vision. The main reason behind this attention is the fact that the face is the conventional way people use to identify each others. Over the last few decades, a lot of researchers gave up working in the face recognition problem due to the inefficiencies of the methods used to represent faces. The face representation was performed by using two categories. The First category is global approach or appearance-based, which uses holistic texture features and is applied to the face or specific region of it. The second category is feature-based or component-based, which uses the geometric relationship among the facial features like mouth, nose, and eyes. (Wiskott et al., 1997) implemented feature-based approach by a geometrical model of a face by 2-D elastic graph. Another example of feature-based was done by independently matching templates of three facial regions (eyes, mouth and nose) and the configuration of the features was unconstrained since the system didn’t include geometrical model (Brunelli & Poggio, 1993). Principal components analysis (PCA) method (Sirovich & Kirby, 1987; Kirby & Sirovich, 1990) which is also called eigenfaces (Turk & Pentland, 1991; Pentland & Moghaddam, 1994) is appearance-based technique used widely for the dimensionality reduction and recorded a great performance in face recognition. PCA based approaches typically include two phases: training and classification. In the training phase, an eigenspace is established from the training samples using PCA and the training face images are mapped to the eigenspace for classification. In the classification phase, an input face is projected to the same eigenspace and classified by an appropriate classifier. Contrasting the PCA which encodes information in an orthogonal linear space, the linear discriminant analysis (LDA) method (Belhumeur et al., 1997; Zhao et al., 1998) which also known as fisherfaces method is another example of appearance-based techniques which encodes discriminatory information in a linear separable space of which bases are not necessarily orthogonal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel face recognition system based on combining eigenfaces with fisher faces using wavelets

In this paper, a biometric system is proposed based on facial features. This proposed system uses an appearance based face recognition method called 2FNN (Two -Feature Neural Network). PCA and LDA are two different feature extraction algorithms used to extract facial features, and then these extracted features are combined using wavelet fusion. The proposed system uses neural networks to classi...

متن کامل

Face Recognition Hybrid Algorithm Based on Improved PCA

As it is simple and convenient to operate face recognition system, and this kind of system is without invasive, making face recognition technology become an important research direction of biometric identification. Face recognition technology involves digital image processing, pattern recognition, computer vision, neural networks and other research areas, has important research values. PCA algo...

متن کامل

Design of face recognition algorithm using PCA -LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks : Design and its application

In this study, polynomial-based radial basis function neural networks are proposed as one of the functional components of the overall face recognition system. The system consists of the preprocessing and recognition module. The design methodology and resulting procedure of the proposed P-RBF NNs are presented. The structure helps construct a solution to high-dimensional pattern recognition prob...

متن کامل

Face Recognition System using Discrete Cosine Transform combined with MLP and RBF Neural Networks

Proposed is an efficient face recognition algorithm using the discrete cosine transform DCT Technique for reducing dimensionality and image parameterization. These DCT coefficients are examined by a MLP (Multi-Layer Perceptron) and radial basis function RBF neural networks. Their purpose is to present a face recognition system that is a combination of discrete cosine transform (DCT) algorithm w...

متن کامل

Performance Analysis of PCA-based and LDA- based Algorithms for Face Recognition

Analysing the face recognition rate of various current face recognition algorithms is absolutely critical in developing new robust algorithms. In his paper we report performance analysis of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for face recognition. This analysis was carried out on various current PCA and LDA based face recognition algorithms using standard p...

متن کامل

Face Recognition Based on LDA and SOM Neural Nets

The use of biometric technique for automatic personal identification is one of the biggest challenges in the security field. The process is complex, because it is influenced by many factors related to the form, position, illumination, rotation, translation, disguise and occlusion of face characteristics. This work presents a searching method to identify a face in a training database. We have pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007